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Application of A level Mathematics and Further Mathematics 

Coupled Spring System 

 

Newton’s second law can be used to set up equations for the motion of a pair of masses 

connected by springs. Hooke’s law is used to find the tension in the springs. The system of 

simultaneous equations can be written using matrices, which make the analysis of the vibration of 

the masses more straightforward. The eigenvectors of the matrix determine the stable modes of 

vibration of the system. 

A vehicle suspension system could be modelled using a similar mass and spring system.  

 

The problem:  

Consider the simple system shown of 

2 masses and 3 springs. The masses are  

constrained to move only in the horizontal  

direction between two fixed walls.  

What are the normal modes of oscillation? 

 

Assumptions: 

The tension in the springs is given by Hooke’s law,  𝑇 = 𝑘𝑥 , where 𝑘 is a constant related to the 

stiffness of the spring and 𝑥 is the displacement from the equilibrium position. 

The system is set up with all three springs at their natural length. 

Assume the masses A and B are equal and the stiffness of the springs are equal, k1 = k2 = k3 = k. 

Assume there is no damping in the system and therefore the amplitude of vibration remains 
constant. 

 

  

m m 
k1 k2 k3 

A B 

This application makes use of the following: 

Topics from A level Mathematics  - Derivative of 𝑒𝑥 

      - Trigonometry 

Topics from Mechanics 1   - Newton’s second law 

Topics from AS Further Mathematics - 2 x 2 matrices 

Topics from A2 Further Mathematics - Solving second order linear differential  
       equations using an auxiliary equation  

      - Eigenvalues and eigenvectors of a matrix 
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Setting up the equations: 

At time t, let displacement of A be 𝑥1  , and displacement of B be 𝑥2 . 

Force diagrams show the tensions in the springs 

 

 

 

Using Newton’s 2nd law, (acceleration is given by 𝑥 ̈ ) 

For A    𝑚𝑥1̈  = 𝑘(𝑥2 − 𝑥1) − 𝑘𝑥1 = −2𝑘𝑥1 + 𝑘𝑥2 
 

For B    𝑚𝑥2̈  = −𝑘(𝑥2 − 𝑥1) − 𝑘𝑥2 =  +𝑘𝑥1 − 2𝑘𝑥2 
 

This pair of simultaneous can be written as a matrix equation  �̈�  = −𝐀𝒙 

     [
𝑥1̈
𝑥2̈

]  = −
𝑘

𝑚
(

2 −1
−1 2

) [
𝑥1
𝑥2

] -------(1) 

 

This is a second-order linear differential equation of the form, 

𝑑2𝑿

𝑑𝑡2
+ 𝑨𝑿 = 0 

 

where  𝑿 = [
𝑥1(𝑡)
𝑥2(𝑡)

] and 𝑨 =  
𝑘

𝑚
(

2 −1
−1 2

). 

 

If there is no damping in the system then the solution is purely oscillatory. 

 

  

𝑘𝑥1 𝑘(𝑥2 − 𝑥1) A 

𝑚 

𝑘𝑥2 

𝑘(𝑥2 − 𝑥1) B 

𝑚 
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Task 1 

 

Solving the differential equation 

If we assume that the solutions of the second-order differential equation are periodic, as the bodies 

are oscillating, then we can let  [
𝑥1(𝑡)
𝑥2(𝑡)

] = [
𝛼1

𝛼2
] cos(𝜔𝑡 + 𝜃) 

where are α1 and α2 are constants and ω is a constant related to the frequency of oscillation. 

 

Show that    
𝑑2𝑿

𝑑𝑡2
=  −𝜔2𝑿 

 

 

 

Task 2 

 

Solving the characteristic equation 

 

Comparing this equation with equation 1 above we see that    𝐀𝑿 = 𝜔2𝑿   -------(2) 

 

The problem is now to find the eigenvalues and eigenvectors of the matrix 𝐀.  

 

𝑿 is the eigenvector of the matrix 𝐀 with corresponding eigenvalue 𝜔2. 

 

Equation 2 can be rewritten as (𝐀 − 𝜔2𝑰)𝑿 = 0    where 𝑰 is the identity matrix. 

Solve the characteristic equation to find the eigenvalues, 𝜔2.      

Hence show that the matrix has two eigenvectors 𝑥1(𝑡) =  𝑥2(𝑡)  and 𝑥1(𝑡) = −𝑥2(𝑡), 

which represent the two normal modes of oscillation. 

 

The frequency of oscillation, 𝑓 =
𝜔

2𝜋
 . Find the frequency of oscillation of each mode. 
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Solutions 

 

Task 1 

Let  [
𝑥1(𝑡)

𝑥2(𝑡)
] = [

𝛼1

𝛼2
] cos(𝜔𝑡 + 𝜃) 

Differentiating w.r.t. time   [
�̇�1(𝑡)

𝑥2̇(𝑡)
] = −𝜔 [

𝛼1

𝛼2
] sin(𝜔𝑡 + 𝜃) 

Differentiating again w.r.t. time  [
𝑥1̈(𝑡)

�̈�2(𝑡)
] = −𝜔2 [

𝛼1

𝛼2
] cos(𝜔𝑡 + 𝜃) 

Therefore    [
𝑥1̈(𝑡)

�̈�2(𝑡)
] = −𝜔2 [

𝑥1(𝑡)

𝑥2(𝑡)
] 

         
𝒅𝟐𝑿

𝒅𝒕𝟐
=  −𝝎𝟐𝑿 

 

Task 2 

For      (𝐀 − 𝜔2𝑰)𝑿 = 0 

Substituting for A from equation 1 gives  (
2

𝑘

𝑚
− 𝜔2 −

𝑘

𝑚

−
𝑘

𝑚
2

𝑘

𝑚
− 𝜔2

) 𝑿 = 0 

For the determinant to be zero,  

then the characteristic equation is    (2
𝑘

𝑚
− 𝜔2)

2
−

𝑘2

𝑚2
= 0 

            2
𝑘

𝑚
− 𝜔2 = ±

𝑘

𝑚
 

which has solutions  𝝎𝟐 =  
𝒌

𝒎
  and 𝝎𝟐 =  

𝟑𝒌

𝒎
 .  These are the eigenvalues. 

 

For 𝜔2 =  
𝑘

𝑚
  ,  

𝑘

𝑚
(

2 −1
−1 2

) [
𝑥1(𝑡)

𝑥2(𝑡)
] =  

𝑘

𝑚
[
𝑥1(𝑡)

𝑥2(𝑡)
] 

            2𝑥1(𝑡) − 𝑥2(𝑡) = 𝑥1(𝑡)  ,  

therefore              𝒙𝟏(𝒕) = 𝒙𝟐(𝒕)       Mode 1 

  

This mode of vibration is where the masses are moving in phase with each other, in the same 

direction at the same time, 𝑥1(𝑡) =  𝑥2(𝑡) Thus inner spring has no effect and remains 

unstretched. 
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For  𝜔2 =  
3𝑘

𝑚
 , 

𝑘

𝑚
(

2 −1
−1 2

) [
𝑥1(𝑡)

𝑥2(𝑡)
] =  

3𝑘

𝑚
[
𝑥1(𝑡)

𝑥2(𝑡)
] 

            2𝑥1(𝑡) − 𝑥2(𝑡) = 3𝑥1(𝑡)  ,  

therefore              𝒙𝟏(𝒕) = −𝒙𝟐(𝒕)   Mode 2 

 

This mode of vibration is where the masses are moving in opposite directions, with equal but 

opposite displacements 𝑥1(𝑡) = −𝑥2(𝑡). In this mode all the springs have an effect on the 

motion and so the forces on the masses are higher. This results in greater acceleration and a 

higher frequency of oscillation. 

 

The motion of the bodies will depend on their initial displacement. However the eigenvectors 

indicate that there are two normal modes of vibration. 

 

The frequency of oscillation in both modes is given by 𝑓 =
𝜔

2𝜋
  

Mode 1, the frequency 𝑓 =
1

2𝜋

√𝑘

√𝑚
   and for mode 2, 𝑓 =

1

2𝜋

√3𝑘

√𝑚
. 

  

The frequency for mode 2 is √3 times that of mode 1 

 

 

The beauty of this approach is that it can be extended to larger systems of 3 or more coupled 

oscillators. The problem of finding the normal modes remains an eigenvalue problem but involving 

an n x n matrix. The resulting differential equation would require more advanced matrix methods to 

solve. 

 


