THE BEAUTY OF FRACTALS
By Anne Bergmann, Rachel Neal and Jackie Train, first year students at the School of Computing and Mathematics, University of Plymouth

Introduction
What is the equation of a straight line? How do you describe a circle in mathematical terms? No problem at all for a brilliant mathematical mind like yours; for example, \(y = \frac{3}{2} x - \frac{5}{4} \) or \(x^2 + (y - 3)^2 = 9 \).

But think of more complex shapes that occur in the physical world. How would you describe the path of lightning? Or the outline of a tree? What about coastlines, clouds, or even those intricate icy shapes that like to form on your car windows on a frosty night?

In fact, the vast majority of natural objects and phenomena in our world defy traditional mathematical description. However, a lot of them can be approximated by fractals, which brings us neatly onto our subject of interest...

What are fractals?
A fractal is any geometric pattern that reveals greater and greater complexity as it is enlarged. The more you keep magnifying a fractal, the more details you discover.

The simplest fractals are constructed by iteration, that is repeating a process over and over. The result of one iteration is used as the starting point for the next. There are three basic types of iteration that create fractals:

- **Iterated Function System:** repeatedly applies geometric transformations like rotations and reflections to points (see the ‘Sierpinski’s Carpet’ example)
- **Generator Iteration:** starts with a geometric shape and substitutes parts of that shape with another figure, called the generator; then repeats this process
- **Formula Iteration:** repeatedly applies a mathematical formula, or several formulas, like the Newton-Raphson method

How are fractals produced?
The great thing about fractals is that you can create amazing art with them. As more and more people discover the beauty of fractals there are hundreds of websites devoted to their creation and to exploring different styles of fractal art.

Fractal Art
Shown here are two fractal artworks that have been created by Roger Johnston using the fractal flame editor Apophysis. (Fractal flames are a type of Iterated Function System). Roger has produced many stunning fractals with Apophysis. Some of his creations are for sale in a New York gallery & you can even buy T-shirts imprinted with his fractal designs.

Further Info
If you would like to find out more about fractals – whether you want to explore the concept of a ‘visible’ infinity, check out fractal art galleries, get a shiny new desktop background, or create your own fractal art – the internet is the place to go. We don’t want to bore you with a long list of websites, just pop ‘fractals’ into a search engine and away you go.

You can view Roger’s art online at community.webshots.com/user/rajahh and you can download Victoria’s fractal wallpaper at victorienne.com. For more details about the information on this poster or a PDF copy please email anne.bergmann@students.plymouth.ac.uk.

Sierpinski’s Carpet
Clear as mud so far? Let’s look at Sierpinski’s carpet, an example of an Iterated Function System.

We start with a solid square. Let’s call it \(S_0 \). This square is now divided into 9 congruent squares removing the central piece to get \(S_1 \).

The same procedure is then applied to each of the 8 shaded squares in \(S_0 \) to obtain \(S_2 \).

Starting to see the pattern? Notice that with each iteration the side length of every square is enlarged with a scale factor \(\frac{1}{3} \), at the bottom left of the original square, then translated to its new position. The rules of this entire iterative process are 8 simple linear transformations, let’s denote them \(\text{IF}_1, \text{IF}_2, \ldots, \text{IF}_8 \). They can be expressed in matrix form as follows:

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix} \text{IF}_1
\]

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \text{IF}_2
\]

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \text{IF}_3
\]

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \text{IF}_4
\]

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \text{IF}_5
\]

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix} \text{IF}_6
\]

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \text{IF}_7
\]

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \text{IF}_8
\]

Let’s look at the effect these transformations have on the area of \(S_0 \). Assume that \(S_0 \) has side length of 1 unit, this means its area is 1 unit\(^2\). Since the sides are scaled by \(\frac{1}{3} \), the area of each new square is reduced to \(\left(\frac{1}{3} \right)^2 \) of its size. So with every iteration each square turns into 8 squares that are \(\frac{1}{9} \) the size. For example \(S_1 \) has \(\frac{1}{9} \) the area of \(S_0 \), in general, the area of \(S_n \) is \(\frac{1}{9^n} \) the area of \(S_0 \).

This means that the area of \(S_n \) is \(\frac{1}{9^n} \) for all natural numbers \(n \). Notice that as \(n \) approaches infinity the area approaches a limiting value of 0 square units. In other words, in performing infinitely many iterations we have removed “all” of the area of our original square \(S_0 \) in constructing Sierpinski’s carpet.

In fact, Sierpinski’s carpet is just the set of points that remain after this construction is repeated infinitely many times, displaying that neat recurring pattern. Zoom in as much as you like on any part of Sierpinski’s Carpet and you will see the same pattern again, and again, and again. This is a fractal.